CAVERN

Constraints and Abstractions for program VERificatioN

ANR SESUR 2007
(Fév. 2008 - Déc. 2011)

Arnaud Gotlieb

INRIA Rennes, France
SIMULA Oslo, Norway

Congres ANR STIC, Lyon, 6 Janvier 2012

Why Testing is so important?

Testing

Java Card - Oberthur

TCAS

Saturn C90 — Cisco Norway

BCE Rafale — Dassault Electronics

Critical software development involves strong V&V requirements:

oeveral (complementary) technigues at the unit level (code level):

- P q 1gVve ZTY-T¢ 20U prope VE 10 D¢e zcked
ftware. model-checking e . o

AR el niearation s st be detectes
it rest eqs,rmg,pr'ogr'amm g fa m ected and remove

At these levels, conformance to software cergrpﬁc%%osg '"sqr'&‘r'{a%%‘é%‘?s%r?ﬁé?%éﬁ

Software Testing

Mode/-based Testing

Test case
generation

Correct ?

v

Execution Verdict:
nass / fail

Constraint-Based Testing

- - 4
generation
-

Constraint
. P R— solving
- /
Execution Verdict:
pass / fail

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques

Developed in the context of both code-based testing and model-based testing

In France:
CEA - List (Osmose S. Bardin...)
(GATEL B. Marre..)
(PathCrawler N. Williams...)
Univ. of Nice Sophia-Antipolis (CPBPV M. Rueher, H. Collavizza, ...)
INRIA - Celtique (Euclide, JAUT A. Gotlieb, ...)
Abroad:
Microsoft Research (DART, PEX, SAGE P. Godefroid...)
Univ. of Madrid (PET E. Albert, G. Puebla, ...)
Univ. of Stanford (EXE C. Cadar, ...)

In the Industry:
Smartesting (Test Designer B.Legeard, ..)
IBM Ilog Lab. (Isolver for ILOG Rules, M. Leconte,..)

The automatic test data generation problem (1)

- Select either a path, branch, source code element, or testing criterion
- Generate a test input or a test set that covers the element

- Predict the expected outputs
f(int x,, int x,, int x;) {

if(x; == x, && X, ==X3)
if(X37=X,%X5) ... /}

(i.e., reachability problem in infinite-state systems)

Solving this problem would have broad industrial impact:

- increase software quality and reliability through better code coverage and
more systematic test inputs generation;

- decrease testing costs through augmented automation;

- automate conformance to Software Certification Standards
as they require covering testing criteria (e.g., DO-178C, ISO 2626-1,...) ;

The automatic test data generation problem (2)

Given a location k in a program under test, generate a test input that reaches k

Reachability problem in infinite-state systems is undecidable in generall

Even when adding bounds, hard f (int x, int x5, int x3) {
combinatorial problem iF(x, == X, && X, ==X
1== X2 2 == 3/

/f[X X] Xz)
Using Random Testing,
Prob{ reack k} = 2 over 232 x 232 x 232 = 2-95 = 0.00000...1.

Constraint solving techniques are required!

v' Loops (i.e., infinite-state systems) and infeasible paths
v" Pointers, dynamic structures, higher-order computations (virtual calls)
v" Floating-point computations, modular computations

The goal of the CAVERN project:

To improve Constraint-Based Testing with

Constraint Programming techniques
to effectively and efficiently address these problems

Illustrated with a selected contribution, in my today's talk:

Constraint-based program exploration for automatic test data generation

Outline

Motivations of the CAVERN project

Constraint-based program exploration for
automatic test data generation

Scientific results of the CAVERN project

Achievment & Conclusions

A reacheability problem

f(int 1, ..)
7 = 100;

while(1 > 1)
{ J++ 7 1-—- 7}

1f(3 > 500)
& value of i to reach e ?
t

Path-oriented exploration

f(1int i, ..)
{
a. 7 = 100;
while(1 > 1)
b. { 3++ ; 1i—-- ;}

1. Path selection
e.g., (a-b)4-...-d-e

d. if(4§ > 500) .
e.
t
Jf

2. Path condition generation (via symbolic exec.) &~
3. Path condition solving
unsatisfiable > FAIL Even without loops, #paths

Is exponential with #decisions

“——— __ Backtrack!

Constraint-based program exploration

f(1int 1,)
{
a 7 = 100;
while(1 > 1)
b. { 93++ ; 1—-—— ;}

if(5 > 500)

d. e
e.
1. Constraint model generation t
Jf

2. Control dependencies generation;
j;=100, i; <1, j3>500

&~

3. Constraint model solving
j1 # j3 entailed = unroll the loop 400 times = i; in 401 .. 231-1

No backtrack |

Constraint-based program exploration
(Contribution of the CAVERN project)

- Based on a constraint model of the whole program
(i.e., each statement is seen as a relation)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators for meta-constraints

* structure-aware labelling heuristics

Assignment as Constraint

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g. SSA)

i*=++1 ; > I, = (i;+1)2

Using finite-domains bound-consistency filtering:

i, =3 2 IpIn-4.2 no i,in -5..3
ik=tti; /% iy = (i +1) 2 %/
i, =16 i, =97 i, =77 i,in 5..16 ?

Statements as constraints

Type declaration: signed long x; = Xxin-231 2311
Assignments: ix=t+i ;D> iy = (ip+1)2

Memory and array accesses and updates:
v=A[i] (or p=Mem[&p]) -2 variations of element/3

Control structures: dedicated meta-constraints
(interface, awakening conditions and filtering algorithms)

Conditionnals (S5SA) if D then C;, else C, => ite

Loops (SSA) while D do C > w

Conditional as meta-constraint: ite/6

ite(x>0, j1, j2. §3, §1=5. j.=18) iff
* x>0 > 179 A j3T
*=(x>0) = 2718 Aj3=e

(x>0 A j1=3 A j3=j1) > (x>0 2218 A 3=
¢ (—(x>0)A j3=j2) = x>0A ;=5 Aj3=]

*Join(x>0Anj;=5A jz3=j;1, -(x>0)A j;=18A j3=j2)

Loop as meta-constraint: w/5

V3 - d)(Vi, VZ)
while(Dec)

A 4

@ body

w(Dec, Vy, V,, V3, body) iff

+ Decyseys = bodyyzeys A W(Dec, v,V V3, Dodyyocynen)

—Decyzcyy = V3=Vy

—(Decyseyt A bodyyseys) > —Decyzeys A V3=V,

—(=Decysevt A Vsmvy) — Decyseyr A bodyyseyr A w(Dec,vp Vi, V3,00dy o cynew)
join(Decyz ¢y A bodyyseyr A W(Dec,v,, Ve, V3,.00dY v cynen) | —DeCy3 vt A V3=Vy)

* o

*

£ int 1) w(Dec, V,, V,, V3, body) :-

j — :I_ O O ; _ ¢ DGCVSGVl —> bOdy\/SéV]_ AN W(Dec1 V21Vnewlv3l bOdyVZGVHEW)
while(1 > 1) ¢ —DeCyzevs = Va=Vy
. . 3 . * —(Decyzeyy A bodyyzey;) > —DeCyseyy A Va=Vy
L+t 7 1 P) ¢ =(—=DecCyzcyy A Vz=Vy) —

Decyzcyi A bodyyzeyi A W(DEC, Vo,V 00 V3,000Yy 5 ynew)

: : * join(Decy 3¢y A bodyyzeys A W(DEC,V4,Vey,V3,000Yy 0 cynew |
if(J > 500) —DeCys¢y1 A V5=Vy)

| = 23, J1:100 ? no

\ f 7

W(z > 1, (1,]), (I5.)5), (IziJa)s Jo=Js+ LAl =13-1)

4 f \

s =1, j3 =122 i, =107 I, = 100,
i > 500 ?

iin 401..231-1

Features of constraint-based exploration

v' Special meta-constraints implementation for ite and w, memory accesses,
function calls, and so on

By construction, w is unfolded only when necessary
but w may NOT terminate !
- only a semi-correct test data generation procedure

v Join is implemented using Abstract Interpretation operators
(e.g., interval-based union, weak-join operator, widening in Euclide)

v' Special propagators based on linear-based relaxations
Using Linear Programming over rationals (i.e., Q_polyhedra)

Abstraction-based relaxations @

Abstraction-based relaxations

- During constraint propagation, constraints can be relaxed in Abstract

Domains (e.g., Q-Polyhedra, Octagons, ...)
Z=X*Y, Xina.b,Yinc.d

<@ { Z -Ya-Xc+ac:20,
Xd-Z-ad +a¥Y 20,
bY -bc-Z+Xc20,
bd-bY-Xd+Z2>0,
a<X<b,c<Y<d}

ol

d

A

d

N

a

~
AN

\

b

- To benefit from specialized algorithm (e.g., simplex for linear constraints)

and capture global states of the constraint system

- Require safe/correct over-approximation (to preserve property such as:
if the Q-Polyhedra is void then the constraint system is unsatisfiable)

—> Dynamic Linear Relaxation, propagation queue with priorities

Constraint-based program exploration
(contribution of the CAVERN project - WP3)

Euclide: A Constraint-based testing platform for C (Gotlieb ICST'09)

Constraints for memory access/updates (i.e., load/store/new/delete)
(Charreteur Botella Gotlieb JSS'09)

Application on the TCAS case study
(Gotlieb KER Journal 2011)

*dkxk

Prototype tool implementation:

Euclide (INRIA A. Gotlieb in 2009) TCAS

Scientific results of the CAVERN project

Constraints over Memory Models (WP?2)

For object-oriented programs (Bytecode Java): Inheritance and virtual calls
(Charreteur Gotlieb ISSRE'10)

PhD Thesis of Florence Charreteur (Defense 9 Mar. 2010)
Prototype tool JAUT

Constraints over floating-point variables (WP4)

- Filtering by ULP Max for addition/substraction (Marre Michel CP'10),
for multiplication/division (Carlier Gotlieb ICTATI'11)

Postdoc Matthieu Carlier
Prototype tool for C floating-point computations = FPSE

- Solving linear constraints over fp variables
(Belaid Michel SCAN'11)

PhD Thesis of Mohammed Said Belaid

Scientific results of the CAVERN project

Constraints over modular integer variables (WP3)

(Gotlieb Leconte Marre ModRef'10)
Implantation in GaTel and JSolver

Explanation-based generalization of infeasible paths in Dynamic
Symbolic Execution (WP3)

(Delahaye Botella Gotlieb ICST'10, TSE in revision)
PhD Thesis of Mickael Delahaye (Defense 25 Oct. 2011)
Prototype tool for C programs = IPEG

Inferring loop invariants for Java programs (WP3)

(Ponsini Collavizza Rueher ICSM'10)
Postdoc of Olivier Ponsini

Achievments

7 publications involving more than 2 partners:
3 Int. Journals, 3 Int. Conf., 1 Nat. Conf.

INRIA-ILOG-CEA

CEA-I3S
CEA-INRIA

More than 20 publications in totall

4 PhD among which 2 have already been completed

(B. Berstel ILOG, M. Said Belaid I3S, F. Charreteur INRIA, M. Delahaye CEA)
1 HDR

12 months of post-docs

Development of several prototype tools (Euclide, JAUT, Jsolver,...)

Conclusions
Constraint-Based Testing

Emerging concept in code- and model-based automatic test data gener.

Constraint Programming techniques offers:

- Global constraints modelling to handle control and data structures
(while pure SAT-solving does not work well in that context)

- Versatility and flexibility of CP (while pure LP or SMT approaches
are very rigid). Handles non-linear constraints over finite domains.

- Generic techniques to implement new solvers, with abstraction-based
relaxation, even if unsatisfiability detection has to be improved
by combining techniques (e.g., SMT/CP)

Mature tools (academic and industrial) already exist, but application on
real-sized industrial cases still have to be demonstrated

.

PhD students

M. Said Belaid
Bruno Berstel C‘;M W/ﬂ/
Florence Charreteur,

Mickael Delahaye,

Post-doc

Matthieu Carlier, Olivier Ponsini

Partners

I3S: Michel Rueher, Claude Michel
ILOG: Michel Leconte,
CEA: Bernard Botella, Bruno Marre, Nicky Williams

