
 CAVERN

Constraints and Abstractions for program VERificatioN
 ANR SESUR 2007
 (Fév. 2008 – Déc. 2011)

 Arnaud Gotlieb

 INRIA Rennes, France
 SIMULA Oslo, Norway

 Congrès ANR STIC, Lyon, 6 Janvier 2012

Why Testing is so important?

for checking unspecified behaviour…

Several (complementary) techniques at the unit level (code level):
 software model-checking
 static-analysis based verification
 software testing
 and Constraint-Based Testing… 

Critical software development involves strong V&V requirements:

- At system testing level, safety-related properties have to be checked
- At integration testing level, HW/SW integration failures must be detected
- At unit testing level, programming faults must be detected and removed

At these levels, conformance to software certification standards is enforced

BCE Rafale – Dassault Electronics

 TCAS

HVAC - Thales

Java Card - Oberthur

Saturn C90 – Cisco Norway

Embedded Software
Testing

Software Testing

Execution Verdict:
pass / fail

implementation

Spec. / Model

Code-based Testing Correct ?

Test case
generation

 Test set

Model-based Testing

Constraint-Based Testing

Execution Verdict:
pass / fail

Spec. / Model

Implementation

Constraint model

Constraint
generation

Constraint
solving

Test set

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques

Developed in the context of both code-based testing and model-based testing

In France:
CEA - List (Osmose S. Bardin…)
 (GATEL B. Marre…)
 (PathCrawler N. Williams…)
Univ. of Nice Sophia-Antipolis (CPBPV M. Rueher, H. Collavizza, …)
INRIA - Celtique (Euclide, JAUT A. Gotlieb, …)

Abroad:
Microsoft Research (DART, PEX, SAGE P. Godefroid…)
Univ. of Madrid (PET E. Albert, G. Puebla, …)
Univ. of Stanford (EXE C. Cadar, …)

In the Industry:
Smartesting (Test Designer B. Legeard, …)
IBM Ilog Lab. (Jsolver for ILOG Rules, M. Leconte,..)

The automatic test data generation problem (1)

(i.e., reachability problem in infinite-state systems)

 f (int x1, int x2, int x3) {

 if(x1 == x2 && x2 ==x3)

 if(x3==x1*x2) ... }

- Select either a path, branch, source code element, or testing criterion

- Generate a test input or a test set that covers the element

- Predict the expected outputs

Solving this problem would have broad industrial impact:

- increase software quality and reliability through better code coverage and
more systematic test inputs generation;

- decrease testing costs through augmented automation;

- automate conformance to Software Certification Standards
as they require covering testing criteria (e.g., DO-178C, ISO 2626-1,…) ;

The automatic test data generation problem (2)

Given a location k in a program under test, generate a test input that reaches k

Even when adding bounds, hard
combinatorial problem

Using Random Testing,
Prob{ reack k} = 2 over 232  232  232 = 2-95 = 0.00000…1.

Reachability problem in infinite-state systems is undecidable in general!

 Loops (i.e., infinite-state systems) and infeasible paths

 Pointers, dynamic structures, higher-order computations (virtual calls)

 Floating-point computations, modular computations

 f (int x1, int x2, int x3) {

 if(x1 == x2 && x2 ==x3)
 if(x3==x1*x2) ... }

Constraint solving techniques are required!

The goal of the CAVERN project:

To improve Constraint-Based Testing with
Constraint Programming techniques
to effectively and efficiently address these problems

Illustrated with a selected contribution, in my today’s talk:

Constraint-based program exploration for automatic test data generation

Outline

• Motivations of the CAVERN project

• Constraint-based program exploration for
 automatic test data generation

• Scientific results of the CAVERN project

• Achievment & Conclusions

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …
d

b

a

f

t

t

f

 A reacheability problem

…

value of i to reach e ?

e

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Path-oriented exploration

…

1. Path selection
 e.g., (a-b)14-…-d-e

2. Path condition generation (via symbolic exec.)
 j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

 3. Path condition solving
 unsatisfiable  FAIL

 Backtrack !

e

Even without loops, #paths
is exponential with #decisions

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Constraint-based program exploration

…

1. Constraint model generation

2. Control dependencies generation;
 j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving

 j1  j3 entailed  unroll the loop 400 times  i1 in 401 .. 231-1

No backtrack !

e

Constraint-based program exploration
(Contribution of the CAVERN project)

- Based on a constraint model of the whole program
 (i.e., each statement is seen as a relation)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:

 * propagation queue management with priorities

 * specific propagators for meta-constraints

 * structure-aware labelling heuristics

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g. SSA)

 i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

 i1 = 3 ?

i2 = 16

i1 in -4..2

 i2 = 9 ?

i1 in -5..3

 i2 in 5..16 ? i2 = 7 ?

 no

 Using finite-domains bound-consistency filtering:

Statements as constraints

 Type declaration: signed long x;  x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Memory and array accesses and updates:
 v=A[i] (or p=Mem[&p])  variations of element/3

 Control structures: dedicated meta-constraints
(interface, awakening conditions and filtering algorithms)

Conditionnals (SSA) if D then C1; else C2  ite

Loops (SSA) while D do C  w

Conditional as meta-constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

= …. j3 …

 (x > 0  j1 = 5  j3 = j1)  (x > 0)  j2 = 18  j3 = j2
 ((x > 0)  j3 = j2)  x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0  j1 = 5  j3 = j1
 (x > 0)  j2 = 18  j3 = j2

j1 = 5; 1

Loop as meta-constraint: w/5

v3 = (v1 , v2)
while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff
 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1
 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1
 (DecV3V1  v3=v1)  DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)
 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

 j = 100;

 while(i > 1)

 { j++ ; i-- ;}

 …

 if(j > 500)

 …

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

 i = 23, j1=100 ?

i3 = 1, j3 = 122

 no

 i3 = 10 ?

i in 401..231-1

 j1 = 100,

 j3 > 500 ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 

 DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

 DecV3V1  v3=v1)

Features of constraint-based exploration

 Special meta-constraints implementation for ite and w, memory accesses,
function calls, and so on

By construction, w is unfolded only when necessary
but w may NOT terminate !
 only a semi-correct test data generation procedure

 Join is implemented using Abstract Interpretation operators
(e.g., interval-based union, weak-join operator, widening in Euclide)

 Special propagators based on linear-based relaxations
Using Linear Programming over rationals (i.e., Q_polyhedra)

Abstraction-based relaxations

Abstraction-based relaxations

 During constraint propagation, constraints can be relaxed in Abstract
Domains (e.g., Q-Polyhedra, Octagons, …)

  { Z - Ya – Xc +ac ≥ 0,

 Xd – Z –ad + aY ≥ 0,
 bY – bc – Z + Xc ≥ 0,
 bd – bY – Xd + Z ≥ 0,
 a ≤ X ≤ b, c ≤ Y ≤ d}

To benefit from specialized algorithm (e.g., simplex for linear constraints)
and capture global states of the constraint system

 Require safe/correct over-approximation (to preserve property such as:
if the Q-Polyhedra is void then the constraint system is unsatisfiable)

 Dynamic Linear Relaxation, propagation queue with priorities

a b

c

d
Z = X * Y, X in a..b, Y in c..d

Euclide: A Constraint-based testing platform for C (Gotlieb ICST’09)

Constraints for memory access/updates (i.e., load/store/new/delete)
(Charreteur Botella Gotlieb JSS’09)

Application on the TCAS case study
(Gotlieb KER Journal 2011)

Prototype tool implementation:

 Euclide (INRIA A. Gotlieb in 2009)

Constraint-based program exploration
(contribution of the CAVERN project – WP3)

 TCAS

Scientific results of the CAVERN project

• Constraints over Memory Models (WP2)

For object-oriented programs (Bytecode Java): Inheritance and virtual calls
 (Charreteur Gotlieb ISSRE’10)

 PhD Thesis of Florence Charreteur (Defense 9 Mar. 2010)
 Prototype tool JAUT

• Constraints over floating-point variables (WP4)

 - Filtering by ULP Max for addition/substraction (Marre Michel CP’10),
 for multiplication/division (Carlier Gotlieb ICTAI’11)

 Postdoc Matthieu Carlier
 Prototype tool for C floating-point computations = FPSE

 - Solving linear constraints over fp variables
 (Belaid Michel SCAN’11)

 PhD Thesis of Mohammed Said Belaid

Scientific results of the CAVERN project

• Constraints over modular integer variables (WP3)

 (Gotlieb Leconte Marre ModRef’10)
 Implantation in GaTel and JSolver

• Explanation-based generalization of infeasible paths in Dynamic
Symbolic Execution (WP3)

 (Delahaye Botella Gotlieb ICST’10, TSE in revision)
 PhD Thesis of Mickael Delahaye (Defense 25 Oct. 2011)
 Prototype tool for C programs = IPEG

• Inferring loop invariants for Java programs (WP3)

 (Ponsini Collavizza Rueher ICSM’10)
 Postdoc of Olivier Ponsini

Achievments

• 7 publications involving more than 2 partners:

3 Int. Journals, 3 Int. Conf., 1 Nat. Conf.

INRIA-ILOG-CEA
CEA-I3S
CEA-INRIA

 More than 20 publications in total!

• 4 PhD among which 2 have already been completed

(B. Berstel ILOG, M. Said Belaid I3S, F. Charreteur INRIA, M. Delahaye CEA)

1 HDR

12 months of post-docs

• Development of several prototype tools (Euclide, JAUT, Jsolver,…)

Conclusions
Constraint-Based Testing

• Emerging concept in code- and model-based automatic test data gener.

• Constraint Programming techniques offers:

- Global constraints modelling to handle control and data structures
 (while pure SAT-solving does not work well in that context)

 - Versatility and flexibility of CP (while pure LP or SMT approaches
 are very rigid). Handles non-linear constraints over finite domains.

 - Generic techniques to implement new solvers, with abstraction-based
 relaxation, even if unsatisfiability detection has to be improved
 by combining techniques (e.g., SMT/CP)

• Mature tools (academic and industrial) already exist, but application on

real-sized industrial cases still have to be demonstrated

Thank you!

• PhD students

M. Said Belaid
Bruno Berstel
Florence Charreteur,
Mickael Delahaye,

• Post-doc

Matthieu Carlier, Olivier Ponsini

• Partners

I3S: Michel Rueher, Claude Michel
ILOG: Michel Leconte,
CEA: Bernard Botella, Bruno Marre, Nicky Williams

